By Alon Goren

At this point, most enterprises are dabbling in generative AI or planning to leverage the technology soon.

According to an October 2023 Gartner, Inc. survey, 45% of organizations are currently piloting generative AI, while 10% have deployed it in full production. Companies are eager to move from pilot to production and start seeing some real business results.

However, enterprises getting started with generative AI often run into a common stumbling block right out of the gate: They suffer analysis paralysis before they can even begin using the technology. There are tons of generative AI tools available today, both broad and highly specialized. Moreover, these tools can be leveraged for all sorts of professions and business purposes—sales, product development, finance, etc.

With so many choices and possibilities, enterprises often get stuck in the planning phase—debating where they should deploy generative AI first. Every business unit (and all of the business’s key stakeholders) wants to own a part of the company’s generative AI initiatives.

Things can get messy. To stay on track, businesses should follow these guidelines when experimenting with generative AI.

Focus On Specific Use Cases With Measurable Goals

Enterprises need to recognize that every part of the organization can benefit from generative AI—eventually. To get there, however, they need to get off the ground with a pilot project.

How do you decide where to get started? Keep it simple and identify a small, specific problem that exists today that can be improved with generative AI. Be practical. Choose an issue that’s been challenging the business for a while, has been difficult to fix in the past and will make a visibly positive impact once resolved. Next, enterprises need to agree upon metrics and goals. The problem can’t be too nebulous or vague; the impact of AI (success or failure) has to be easily measurable.

With that in mind, the pilot project should have a contained scope. The purpose is to demonstrate the real-world value of the technology, build support for it across the organization and then broaden adoption from there.

If organizations try to leverage AI in too many different ways and solve multiple problems, it’ll cause the scope to grow out of control and make it impossible to complete the pilot within a reasonable timeframe. Ambition has to be balanced with practicality. Launching a massive pilot project that requires extensive resources and long timelines is a recipe for failure.

What’s a good timeline for the pilot? It depends on the circumstances, of course. Generally speaking, however, it should only take a few weeks or a couple of months to execute, not multiple quarters or an entire year.

Start small, get something functional quickly and then iterate on it. This iterative approach allows for continuous learning and improvement, which is essential given the nascent state of generative AI technology.

Organizations must also be sure to keep humans in the loop from the very beginning of the experimentation phase. The rise of AI doesn’t render human expertise obsolete; it amplifies it. As productivity and business benefits increase with generative AI, human employees become even more valuable as supervisors and validators of AI output. This is essential for maintaining control and building trust in AI. In addition, the pool of early participants will also help champion the technology throughout the organization once the enterprise is ready to deploy it widely.

Finally, once the project has begun, organizations have to stick with it until it’s complete. Don’t waste time starting over or shifting to other use cases prematurely. Just get going and stay the course. After that’s been completed successfully, companies can expand their use of generative AI more broadly across the organization.

Choosing The Right Technology

The other major component of the experimentation phase is selecting the right vendor. With the generative AI market booming, it can seem impossible to tell the differences between one solution and another. Lots of noisy marketing only makes things more confusing.

The best way to cut through the noise is to identify the requirements that are most important to the organization (e.g., data security, governance, scalability, compatibility with existing infrastructure) and look for the vendor that best meets those needs.

It’s extremely important to understand where vendors stand on each of these things early on to avoid the headache of discovering that they don’t really check those boxes later. The only way to do that is by talking to the vendor (especially its sales engineering team) and seeing these capabilities demoed first-hand.

Get Ahead Of The Competition With A Strong Start

Within the next couple of years, I expect almost every enterprise will employ generative AI in production. Those wielding it effectively will get a leg up on their competition, while those struggling will be at risk of falling behind. Though the road may be uncharted, enterprises can succeed by focusing on contained, valuable projects, leveraging human expertise and selecting strategic technology partners.

Don’t wait. Embrace this unique opportunity to innovate and take that crucial first step now.

Feature Image Credit: GETTY

By Alon Goren

Follow me on LinkedIn. Check out my website.

CEO and Cofounder of AnswerRocket. Read Alon Goren’s full executive profile here.

Sourced from Forbes

Write A Comment