Tag

heart attack

Browsing

BY 

A new artificial intelligence-based approach can predict if and when a patient could die of a heart attack.

The technology, built on raw images of patient’s diseased hearts and patient backgrounds, significantly improves on doctor’s predictions and stands to revolutionize clinical decision making and increase survival from sudden and lethal cardiac arrhythmias, one of medicine’s deadliest and most puzzling conditions.

“Sudden cardiac death caused by arrhythmia accounts for as many as 20% of all deaths worldwide and we know little about why it’s happening or how to tell who’s at risk,” says senior author Natalia Trayanova, a professor of biomedical engineering and medicine at Johns Hopkins University.

“There are patients who may be at low risk of sudden cardiac death getting defibrillators that they might not need and then there are high-risk patients that aren’t getting the treatment they need and could die in the prime of their life. What our algorithm can do is determine who is at risk for cardiac death and when it will occur, allowing doctors to decide exactly what needs to be done.”

The team is the first to use neural networks to build a personalized survival assessment for each patient with heart disease. These risk measures provide with high accuracy the chance for a sudden cardiac death over 10 years, and when it’s most likely to happen.

The deep learning technology is called Survival Study of Cardiac Arrhythmia Risk, or SSCAR. The name alludes to cardiac scarring caused by heart disease that often results in lethal arrhythmias, and the key to the algorithm’s predictions.

For the study in Nature Cardiovascular Research, researchers used contrast-enhanced cardiac images that visualize scar distribution from hundreds of real patients at Johns Hopkins Hospital with cardiac scarring to train an algorithm to detect patterns and relationships not visible to the naked eye.

Current clinical cardiac image analysis extracts only simple scar features like volume and mass, severely underutilizing what’s demonstrated in this work to be critical data.

“The images carry critical information that doctors haven’t been able to access,” says first author Dan Popescu, a former Johns Hopkins doctoral student. “This scarring can be distributed in different ways and it says something about a patient’s chance for survival. There is information hidden in it.”

The team trained a second neural network to learn from 10 years of standard clinical patient data, 22 factors such as patients’ age, weight, race, and prescription drug use.

The algorithms’ predictions were significantly more accurate on every measure than doctors, and they were validated in tests with an independent patient cohort from 60 health centers across the United States, with different cardiac histories and different imaging data, suggesting the platform could be adopted anywhere.

“This has the potential to significantly shape clinical decision-making regarding arrhythmia risk and represents an essential step towards bringing patient trajectory prognostication into the age of artificial intelligence,” says Trayanova, co-director of the Alliance for Cardiovascular Diagnostic and Treatment Innovation. “It epitomizes the trend of merging artificial intelligence, engineering, and medicine as the future of healthcare.”

The team is now working to build algorithms to detect other cardiac diseases. Trayanova says the deep-learning concept could be developed for other fields of medicine that rely on visual diagnosis.

Source: Johns Hopkins University

Feature Image Credit:  Olivier Collet/Unsplash

BY 

Sourced from FUTURITY

By Jeanna Vazquez

An artificial intelligence system is capable of spotting whether someone will have a heart attack within the next year — through a routine eye scan.

A team from the University of Leeds believes this AI tool opens the door to a cheap and simple screening program for the world’s No. 1 killer. Their tests find the computer can predict patients at risk of a heart attack in the next 12 months with up to 80% accuracy. The breakthrough adds to evidence that our eyes are not just “windows to the soul,” but windows to overall health as well.

“Cardiovascular diseases, including heart attacks, are the leading cause of early death worldwide and the second-largest killer in the UK. This causes chronic ill-health and misery worldwide,” project supervisor Professor Alex Frangi says in a university release.

“This technique opens-up the possibility of revolutionizing the screening of cardiac disease. Retinal scans are comparatively cheap and routinely used in many optician practices. As a result of automated screening, patients who are at high risk of becoming ill could be referred for specialist cardiac services,” Frangi adds.

Looking at the retina to discover red flags in the heart

The retina is a small membrane at the back of the eye containing light sensitive cells. Doctors have found that changes to the tiny blood vessels can hint at vascular disease, including heart problems.

Study authors used an advanced type of AI, known as deep learning, to teach the machine to automatically read more than 5,000 eye scans. The scans come from routine eye tests during visits to opticians or eye clinics. All of the participants are part of the UK Biobank, which tracks the health of half a million adults.

“The system could also be used to track early signs of heart disease.”

Deep learning is a complex series of algorithms that enable machines to make forecasts based on patterns in data. The technique, described in the journal Nature Machine Intelligence, could revolutionize heart therapy, according to the researchers.

“The AI system has the potential to identify individuals attending routine eye screening who are at higher future risk of cardiovascular disease, whereby preventative treatments could be started earlier to prevent premature cardiovascular disease,” says co-author Professor Chris Gale, a consultant cardiologist at Leeds Teaching Hospitals NHS Trust.

The study identified associations between pathology in the retina and changes in the patient’s heart. Once the system learned each image pattern, the AI could estimate the size and pumping efficiency of the left ventricle from retinal scans alone.

This is one of the heart’s four chambers. An enlarged ventricle can increase the risk of heart disease. The computer combined the estimated size of the left ventricle and its pumping efficiency with data like age and sex.

The eyes are revealing a lot about disease and death

Currently, doctors determine this information using an MRI (magnetic resonance imaging) or echocardiography scans of the heart. The diagnostic tests are expensive and are often only available in a hospital. The tests can be inaccessible for many people in countries with lesser health care systems. They also increase health care costs and waiting times in wealthy nations.

“The AI system is an excellent tool for unravelling the complex patterns that exist in nature, and that is what we have found – the intricate pattern of changes in the retina linked to changes in the heart,” adds co-author Sven Plein of the British Heart Foundation.

A recent study discovered a similar link between biological aging of the retina and mortality. Those with a retina “older” than their actual age were up to 67% more likely to die over the next decade.

Feature Image: Their tests find the computer can predict patients at risk of a heart attack in the next 12 months with up to 80% accuracy. (CREDIT: Getty Images)

By Jeanna Vazquez

Sourced from Brighter Side of News